Microstructure and mechanical properties of spark plasma sintering produced ZrC–Mo composites

نویسندگان

چکیده

The fabrication of ZrC–Mo composites with (10–25 vol. %) Mo content using a spark plasma sintering at 1750 °C under 35 MPa was investigated in this research. effects adding various contents on the were also examined. microstructure and phase analysis by scanning electron microscopy, x-ray diffractometer, energy dispersive spectroscopy. Microscopic revealed that addition metal resulted making ceramic particles ZrC finer, sintered products denser, conditions softer. Moreover, continuous solid solution forms composite as rises, (Zr, Mo)C Mo)2C start to generate, thus strengthens material. reduced grain size lead fine-grain strengthening. With relative density 97.53%, Vickers hardness 23.88 GPa, flexural strength 317.55 MPa, possessed best properties when molybdenum volume fraction reaches 15 %. synergistic effect fine strengthening improved mechanical behavior composite.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

Composite ceramics BaTiO₃/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO₃ have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO₂, m-ZrO₂, and BaTiO₃ has been obtained. Our results indicate that SPS can be effective for the decrease in grain s...

متن کامل

Spark Plasma Sintered Hydroxyapatite – Zirconia Composites: Structural and Mechanical Properties

Hydroxyapatite (Ca10(PO4)6(OH)2) (HAp) is a very attractive material for human tissue implantation, beacuse it makes up ~69% of the weight of bone [1]. Unfortunately HAp posses low mechanical properties (strength, fracture toughness), which is a barrier to its applications in load-bearing situations [2]. The mechanical properties of HAp composites, is based on the synthesis of composites and th...

متن کامل

Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

Ultrafine tungsten carbide-nickel (WC-Ni) cemented carbides with varied fractions of silicon carbide (SiC) nanowhisker (0-3.75 wt.%) were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC) and tantalum carbide (TaC) as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical prope...

متن کامل

Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by Spark Plasma Sintering

In this study we report on the sintering behavior, microstructure and electrical properties of Al-doped ZnO ceramics containing 0-0.2 wt. % graphene sheets (AZO-GNSs) and processed using spark plasma sintering (SPS). Our results show that the addition of <0.25 wt. % GNSs enhances both the relative density and the electrical resistivity of AZO ceramics. In terms of the microstructure, the GNSs a...

متن کامل

Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

The powder of an Al7075 alloy was prepared by gas atomization. A combination of cellular, columnar, and equiaxed dendritic-like morphology was observed in individual powder particles with continuous layers of intermetallic phases along boundaries. The cells are separated predominantly by high-angle boundaries, the areas with dendritic-like morphology usually have a similar crystallographic orie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2023

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0146726